Sparse signal reconstruction on the sphere: implications of a new sampling theorem
نویسندگان
چکیده
A new sampling theorem on the sphere has been developed recently, reducing the number of samples required to represent a band-limited signal by a factor of two for equiangular sampling schemes. For signals sparse in a spatially localised measure, such as in a wavelet basis, overcomplete dictionary, or in the magnitude of their gradient, for example, a reduction in the number of samples required to represent a band-limited signal has important implications for sparse signal reconstruction on the sphere. A more efficient sampling of the sphere improves the fidelity of sparse signal reconstruction through both the dimensionality and spatial sparsity of signals. To demonstrate this result we consider a simple inpainting problem on the sphere and consider signals sparse in the magnitude of their gradient. We develop a framework for total variation (TV) inpainting, which relies on a sampling theorem to define a discrete TV norm on the sphere. Solving these problems is computationally challenging; hence we develop fast methods for this purpose. Numerical simulations are performed, verifying the enhanced fidelity of sparse signal reconstruction due to the more efficient sampling of the sphere provided by the new sampling theorem.
منابع مشابه
Implications for compressed sensing of a new sampling theorem on the sphere
Sampling theorems on the sphere state that all the information of a continuous band-limited signal on the sphere may be contained in a discrete set of samples. For an equiangular sampling of the sphere, the Driscoll & Healy (DH) [1] sampling theorem has become the standard, requiring ∼ 4L samples on the sphere to represent exactly a signal band-limited in its spherical harmonic decomposition at...
متن کاملSampling theorems and compressive sensing on the sphere
We discuss a novel sampling theorem on the sphere developed by McEwen & Wiaux recently through an association between the sphere and the torus. To represent a band-limited signal exactly, this new sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere, such as the canonical Driscoll & Healy sampling theorem. A reduction in the number ...
متن کاملSparse Space Replica Based Image Reconstruction via Cartesian and Spiral Sampling Strategies
In this study, a replica based image reconstruction is designed to provide high-quality reconstructions from very sparse space data. The problem of reconstructing an image from its unequal frequency samples take place in many applications. Images are observed on a spherical manifold, where one seeks to get an improved unidentified image from linear capacity, which is noisy, imperfect through a ...
متن کاملFast Reconstruction of SAR Images with Phase Error Using Sparse Representation
In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1205.1013 شماره
صفحات -
تاریخ انتشار 2012